Package ‘RNASeqBias’

March 7, 2011

Type Package

Title Bias Detection and Correction in RNA-Sequencing Data

Version 1.0

Date 2011-03-01

Author Wei Zheng, Lisa Chung, Hongyu Zhao

Maintainer Wei Zheng <wei.zheng@yale.edu>

Description The package contains functions and sample data for detecting and correcting for biases in gene expression levels from RNA-Seq experiments.

Depends Genominator, ShortRead, gam, gtools

License Artistic-2.0

LazyLoad yes

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNASeqBias-package</td>
<td>2</td>
</tr>
<tr>
<td>check_agreement</td>
<td>2</td>
</tr>
<tr>
<td>gampc</td>
<td>3</td>
</tr>
<tr>
<td>group_plot</td>
<td>4</td>
</tr>
<tr>
<td>group_plotm</td>
<td>5</td>
</tr>
<tr>
<td>MAQCtestdata</td>
<td>6</td>
</tr>
<tr>
<td>plotk</td>
<td>7</td>
</tr>
<tr>
<td>prime.reweight.counts</td>
<td>8</td>
</tr>
</tbody>
</table>

Index 10
check_agreement

Description

The package contains functions and sample data for detecting and correcting for biases in gene expression levels from RNA-Seq experiments. Considered bias factors are gene length, GC content and dinucleotide frequencies. Principal component analysis on GC content and dinucleotide frequencies are first performed, and the resulting principal components and gene length were used as covariates to fit a generalized additive model with smoothing spline on gene expression levels as response. The package also have codes to generate bias plots before and after bias correction, and to compare with other quantitative platforms.

Details

Package: RNASeqBias
Type: Package
Version: 1.0
Date: 2011-03-01
License: Artistic-2.0
LazyLoad: yes

~~ An overview of how to use the package, including the most important functions ~~

Author(s)

Wei Zheng, Lisa Chung, Hongyu Zhao
Maintainer: Wei Zheng <wei.zheng@yale.edu>

check_agreement

Description

This function checks the correlation between gene expression measures obtained from different quantitative platforms, and compare the correlations before and after bias correction, to see whether there is any improvement in cross-platform consistency.

Usage

```r
check_agreement(checkdat, grpn = 3, cor.method = "pearson")
```
gampc

Arguments

checkdat A dataframe with 3 columns. For example, column 1 is gene expression levels from RTPCR, column 2 is uncorrected gene expression levels from sequencing, column 3 is corrected gene expression levels from sequencing.

grpn Number of groups to divide the data (default is 3). Groups are divided according to the fold change before and after bias correction.

cor.method Type of correlation coefficient (covariance) to calculate, default is "pearson". Could also be "kendall" or "spearman".

Value

A numeric matrix with 3 columns: correlation with uncorrected data, correlation with corrected data, and percentage improvement. Each row represents calculations for a group of data with corresponding fold change, except for the last row, which is calculated from all the data.

Author(s)

Wei Zheng, Lisa Chung, Hongyu Zhao

Examples

```r
## data is not provided
rnaseq <- read.table("MAQC_pcg_genes_expr.txt", header=T)
rtpcr <- read.table("RTPCR_result_cleaned.txt", header=T)
guce <- read.table("ENS59_Gene_length_GC_dinuc.txt", header=T)
low.b <- which(apply(log(rnaseq[,1:7]),1,min) < -10)
low.rtb <- which(apply(log(rtpcr[,5:8]),1,mean) == -Inf)
common.b <- intersect(rownames(rtpcr)[-low.rtb], rownames(rnaseq)[-low.b])
biasg <- guce[match(rownames(rnaseq), guce[,1]),]
biasg[,2] <- log(biasg[,2])
colnames(biasg)[2] <- "log_L"
crt.brain <- gampc(apply(log(rnaseq[-low.b, 1:7]),1,mean), biasg[-low.b,2], biasg[-low.b,3:19])
rtid.b <- match(common.b, rownames(rtpcr))
sqid.b <- match(common.b, rownames(rnaseq))
rt.brain <- apply(log(rtpcr[rtid.b, 5:8]), 1, mean) #delta_CT.
seq.b <- apply(log(rnaseq[sqid.b,1:7]),1,mean)
crt.b <- crt.brain[match(common.b, rownames(crt.brain)),1]
br.dat <-cbind(rt.brain, seq.b, crt.b)
check.agreement(br.dat)
```

Using generalized additive model combined with principal component analysis to correct for various biases in the gene expression levels from RNA-Seq data.
Description
This function regresses the gene expression levels from RNA-Seq data (usually in logRPKM scale) on various bias factors such as log(gene length), GC content, and dinucleotide frequencies in the gene using generalized additive model. Since some bias factors may be highly correlated, such as GC content and GC frequency, PCA was first performed on a subset of bias factors before GAM regression.

Usage
```r
gampc(ymat, xmat1, xmat2, num.pc = NULL)
```

Arguments
- `ymat`: a dataframe of gene expression levels from RNA-Seq data in log(RPKM) units. Each column represents data from one experiment.
- `xmat1`: a dataframe of bias factors that does not need PCA adjustment. For example, log(gene length) is directly used in GAM without PCA.
- `xmat2`: a dataframe of bias factors that needs PCA adjustment. For example, GC content and dinucleotide frequencies.
- `num.pc`: Number of principal components to be used in GAM regression. Default value is to calculate the minimal number of PC that explains 95%

Details
`xmat2` was first converted to a number of principal components that are independent from each other, and combined with `xmat1` to fit a generalized additive model using smoothing splines.

Value
This function returns a dataframe with the same dimension as `ymat`, representing corrected gene expression levels.

Author(s)
Wei Zheng, Lisa Chung, Hongyu Zhao

Examples
```r
##see vignette for usage on MAQCtestdata
```

Description
This function calls a subfunction `plotk` to group bias factors into bins and plot the gene expression levels against each bias factor. Currently it handles 18 bias factors simultaneously.

Usage
```r
group_plot(mat, minval = NULL, maxval = NULL, type = "median", grpn = 500, spec = NULL)
```
group_plotm

Arguments

- **mat**: a matrix of 19 columns, the first column is log(RPKM), 2nd to 19th columns are bias factors.
- **minval**: lower limit of y coordinate range.
- **maxval**: upper limit of y coordinate range.
- **type**: a character string with values "bin" or "median", indicating the type of plots to make. If **type** = "median" (default), plots with median exp level against median bias level for each bin will be generated. If **type** = "bin", plots with median exp level against the bin index of bias factors will be generated.
- **grpn**: Number of genes in each bin. Default is 500.
- **spec**: a numeric flag. If **spec** = -1 (default), will make bias plots for all 18 bias factors; otherwise only the bias factor in column **spec** will be plotted.
- **titleon**: a logical value to control whether to add a title named after column names of **mat** for each bias plot. Default is TRUE.

Value

This function will generate bias plots and return a dataframe with y and x values for each bias plot.

Author(s)

Wei Zheng, Lisa Chung, Hongyu Zhao

See Also

See Also **plotk, group_plotm**

Examples

```r
## see vignette for usage on MAQCtestdata
```

group_plotm
Overlay bias plots to compare.

Description

This function takes output from different **group_plot** runs, and make overlapping bias plots for comparison.

Usage

```r
group_plotm(toCmp, minval = NULL, maxval = NULL, titl = rep("not specified", 18))
```

Arguments

- **toCmp**: A list of **group_plot** objects.
- **minval**: lower limit of y coordinate range.
- **maxval**: upper limit of y coordinate range.
- **titl**: A vector of 18 character strings to make titles for each bias plot. Usually named after the column names of bias factors.
Value

This function makes overlapping bias plots without return values.

Author(s)

Wei Zheng, Lisa Chung, Hongyu Zhao

See Also

See Also `group_plot`

Examples

```r
# see vignette for usage on MAQCtestdata
```

MAQCtestdata

RNA-Seq counts data and annotation

Description

This data set contains

Usage

`MAQCtestdata`

Format

A list with four components: “Counts” contains counts mapped to each ENSEMBL transcript in one MAQC2 experiment; “rewightedCounts” contains counts after prime reweighting adjustment; “tanno” contains annotation of bias factors for each transcript; “sinog” contains information of single-isoform non-overlapping genes.

Source

The brain data is from SRR037452, and the UHR data is from SRR037459. The counts data and corresponding RPKM values before and after prime reweighting can also be generated from alignment files using the function “prime.reweight.counts” in the package.

References

A subfunction called by group_plot

Description
This function divides a bias factor into bins and make a plot against gene expression levels.

Usage
plotk(x, y, minval, maxval, type, grpn = 500)

Arguments
x
a numeric vector to partition into bins, usually a bias factor such as GC content.
y
a numeric vector to plot on y-axis, usually log(RPKM)
minval
lower limit of y coordinate range.
maxval
upper limit of y coordinate range.

Details
only for internal use. argument values passed through group_plot

Value
A dataframe with two columns: xvalues to plot and yvalues to plot. A scatter plot with a lowess fitted line is also generated.

Author(s)
Wei Zheng, Lisa Chung, Hongyu Zhao

See Also
See Also group_plot
prime.reweight.counts

Calculate gene expression levels from alignment files and implementing prime reweighting method

Description

This function calculates counts per gene/transcript from alignment files in bam format, and implements prime reweighting method as described in Hansen et al. 2010.

Usage

prime.reweight.counts(infile, annotation, chrMap, group_fac)

Arguments

infile a character data frame with two columns: id (the name for each experiment), and path (the path to corresponding alignment file)

chrMap a simple character vector with names of each chromosome, must match "Chromosome.Name" in annotation.

group_fac a character string indicating the unit of counts, e.g. "Ensembl.Transcript.ID"

Value

allCounts a data frame with counts per gene for each sample, followed by the prime reweighted counts for each sample.

trExp a data frame with the same dimension as allCounts, but contains gene expression levels in RPKM unit.

Note

Reads in the alignment files are not probabilistically assigned to each transcript. Instead one read may be counted for multiple transcripts.

Author(s)

Wei Zheng, Lisa Chung, Hongyu Zhao

References

Examples

if you have a bunch of alignment files in bam format, e.g. brain samples in MAQC
you can use the following codes

insample <- data.frame("id" = c("BRN_SRR037452",
"BRN_SRR037453","BRN_SRR037454","BRN_SRR037455",
"BRN_SRR037456", "BRN_SRR037457", "BRN_SRR037458"),
"path" = c("SRR037452_map.bam", "SRR037453_map.bam", "SRR037454_map.bam",
"SRR037455_map.bam", "SRR037456_map.bam", "SRR037457_map.bam",
"SRR037458_map.bam"))

chrMap is a simple vector with the chromosome names
chrMap <- c(paste("chr", 1:22, sep = ""), "chrM", "chrX", "chrY")

annotation file for ENS59 protein coding genes
annotation <- read.table("ENS59_pcg_annotation.txt", header=T)

allCounts <- prime.reweight.counts(insample, annotation,
chrMap, group_fac = "Ensembl.Transcript.ID")
Index

*Topic datasets
 MAQCtestdata, 6
*Topic package
 RNASeqBias-package, 1

check_agreement, 2

gampc, 3
group_plot, 4, 5, 7
group_plotm, 5, 5

MAQCdata (MAQCtestdata), 6
MAQCtestdata, 6

plotk, 5, 6
prime.reweight.counts, 7

RNASeqBias (RNASeqBias-package), 1
RNASeqBias-package, 1