Package ‘viRandomForests’

March 17, 2017

Title Variable Importance-Weighted Random Forests
Version 1.0

Date 2017-03-16

Depends R (>=2.5.0), stats

Suggests RColorBrewer, MASS

Author original R package randomForest by Andy Liaw and Matthew Wiener,
modified by Yiyi Liu for weighted random feature sampling

Description
Perform variable importance-weighted Random Forests classification and regression analysis.

Maintainer Yiyi Liu <yiyi.liu@yale.edu>
License GPL (>=2)

NeedsCompilation yes

R topics documented:

classCenter 1
combine 2
getTree o . L e 3
SIOW & o v v e e e e e e e e e e e e e e e e 4
IMPOItANCENeW o v vttt e e e e e e e e 5
IMports85 . . . L L 6
10 F2 g 1 7
MDSplot e e e 8
naroughfix e 9
outlier L e 10
partialPloto 11
plot.viRandomForests 13
predict.viRandomForests L 14
rflmpute e e e 15
TrEESIZE 17
tuneRF.o 18
varlmpPlot e 19
varUsed oL 20
viRandomForests 21

2 classCenter

classCenter Prototypes of groups.

Description

Prototypes are ‘representative’ cases of a group of data points, given the similarity matrix among
the points. They are very similar to medoids. The function is named ‘classCenter’ to avoid conflict
with the function prototype in the methods package.

Usage

classCenter (x, label, prox, nNbr = min(table(label))-1)

Arguments
X a matrix or data frame
label group labels of the rows in x
prox the proximity (or similarity) matrix, assumed to be symmetric with 1 on the
diagonal and in [0, 1] off the diagonal (the order of row/column must match that
of x)
nNbr number of nearest neighbors used to find the prototypes.
Details

This version only computes one prototype per class. For each case in x, the nNbr nearest neighors
are found. Then, for each class, the case that has most neighbors of that class is identified. The pro-
totype for that class is then the medoid of these neighbors (coordinate-wise medians for numerical
variables and modes for categorical variables).

This version only computes one prototype per class. In the future more prototypes may be computed
(by removing the ‘neighbors’ used, then iterate).
Value

A data frame containing one prototype in each row.

Author(s)
Andy Liaw

See Also

viRandomForests, MDSplot

Examples

data (iris)

iris.rf <- viRandomForests (iris[,-5], iris[,5], prox=TRUE)

iris.p <- classCenter(iris[,-5], iris[,5], iris.rf$prox)

plot (iris[,3], iris[,4], pch=21, xlab=names (iris) [3], ylab=names(iris) [4],
bg=c ("red", "blue", "green") [as.numeric (factor (iris$Species))],
main="Iris Data with Prototypes")

points(iris.pl,3], iris.pl,4], pch=21, cex=2, bg=c("red", "blue", "green"))

combine 3

combine Combine Ensembles of Trees

Description

Combine two more more ensembles of trees into one.

Usage

combine(...)

Arguments

.. two or more objects of class viRandomForests, to be combined into one.

Value

An object of class viRandomForests.

Note

The confusion, err.rate, mse and rsqg components (as well as the corresponding compo-
nents in the test compnent, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

viRandomForests, grow

Examples

data (iris)

rfl <- viRandomForests (Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf2 <- viRandomForests (Species ~ ., iris, ntree=50, norm.votes=FALSE)
rf3 <- viRandomForests (Species ~ ., iris, ntree=50, norm.votes=FALSE)

rf.all <- combine(rfl, rf2, rf3)
print(rf.all)

4 getTree

getTree Extract a single tree from a forest.

Description

This function extract the structure of a tree from a viRandomForests object.

Usage

getTree(rfobj, k=1, labelVar=FALSE)

Arguments

rfobj a viRandomForests object.

k which tree to extract?

labelvar Should better labels be used for splitting variables and predicted class?
Details

For numerical predictors, data with values of the variable less than or equal to the splitting point go
to the left daughter node.

For categorical predictors, the splitting point is represented by an integer, whose binary expansion
gives the identities of the categories that goes to left or right. For example, if a predictor has
four categories, and the split point is 13. The binary expansion of 13 is (1, 0, 1, 1) (because
13 =1%2040%2! +1 %224+ 1%23), so cases with categories 1, 3, or 4 in this predictor get sent
to the left, and the rest to the right.

Value

A matrix (or data frame, if 1abel1Var=TRUE) with six columns and number of rows equal to total
number of nodes in the tree. The six columns are:

left daughter

the row where the left daughter node is; O if the node is terminal
right daughter

the row where the right daughter node is; O if the node is terminal

split var which variable was used to split the node; O if the node is terminal
split point where the best split is; see Details for categorical predictor
status is the node terminal (-1) or not (1)

prediction the prediction for the node; O if the node is not terminal

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

viRandomForests

grow

Examples

data (iris)

Look at the third trees in the forest.
getTree (viRandomForests (iris[,-5],

iris[, 5], ntree=10), 3, labelVar=TRUE)

grow Add trees to an ensemble

Description

Add additional trees to an existing ensemble of trees.

Usage
S3 method for class 'viRandomForests'
grow (x, how.many, ...)

Arguments
X

an object of class viRandomForests, which contains a forest component
how.many number of trees to add to the viRandomForests object.

currently ignored.

Value

An object of class viRandomForests, containing how . many additional trees.

Note

The confusion, err.rate, mse and rsg components (as well as the corresponding compo-
nents in the test compnent, if exist) of the combined object will be NULL.

Author(s)

Andy Liaw <andy_liaw@merck.com>
See Also

combine, viRandomForests

Examples

data (iris)

iris.rf <- viRandomForests (Species ~
iris.rf <- grow(iris.rf, 50)
print (iris.rf)

., iris, ntree=50, norm.votes=FALSE)

6 importancenew

importancenew Extract variable importancenew measure

Description

This is the extractor function for variable importancenew measures as produced by viRandomForests.

Usage
S3 method for class 'viRandomForests'
importancenew (x, type=NULL, class=NULL, scale=TRUE, ...)
Arguments
X an object of class viRandomForests.
type either 1 or 2, specifying the type of importance measure (1=mean decrease in
accuracy, 2=mean decrease in node impurity).
class for classification problem, which class-specific measure to return.
scale For permutation based measures, should the measures be divided their “standard
errors”?
not used.
Details

Here are the definitions of the variable importance measures. The first measure is computed from
permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is
recorded (error rate for classification, MSE for regression). Then the same is done after permuting
each predictor variable. The difference between the two are then averaged over all trees, and nor-
malized by the standard deviation of the differences. If the standard deviation of the differences is
equal to O for a variable, the division is not done (but the average is almost always equal to 0 in that
case).

The second measure is the total decrease in node impurities from splitting on the variable, averaged
over all trees. For classification, the node impurity is measured by the Gini index. For regression, it
is measured by residual sum of squares.

Value

A matrix of importance measure, one row for each predictor variable. The column(s) are different
importance measures. Note this importance measure is based on the weighted Random Forests.

See Also

viRandomForests, varImpPlot

Examples

set.seed (4543)

data (mtcars)

mtcars.rf <- viRandomForests (mpg ~ ., data=mtcars, ntree=1000,
keep.forest=FALSE, importance=TRUE)

importancenew (mtcars.rf)

importancenew (mtcars.rf, type=1)

imports85 7

imports85 The Automobile Data

Description

This is the ‘Automobile’ data from the UCI Machine Learning Repository.

Usage

data (imports85)

Format

imports85 is a data frame with 205 cases (rows) and 26 variables (columns). This data set
consists of three types of entities: (a) the specification of an auto in terms of various characteristics,
(b) its assigned insurance risk rating, (c) its normalized losses in use as compared to other cars.
The second rating corresponds to the degree to which the auto is more risky than its price indicates.
Cars are initially assigned a risk factor symbol associated with its price. Then, if it is more risky
(or less), this symbol is adjusted by moving it up (or down) the scale. Actuarians call this process
‘symboling’. A value of +3 indicates that the auto is risky, -3 that it is probably pretty safe.

The third factor is the relative average loss payment per insured vehicle year. This value is normal-
ized for all autos within a particular size classification (two-door small, station wagons, sports/speciality,
etc...), and represents the average loss per car per year.

Author(s)

Andy Liaw

Source

Originally created by Jeffrey C. Schlimmer, from 1985 Model Import Car and Truck Specifica-
tions, 1985 Ward’s Automotive Yearbook, Personal Auto Manuals, Insurance Services Office, and
Insurance Collision Report, Insurance Institute for Highway Safety.

The original datais at http://www.ics.uci.edu/~mlearn/MLSummary.html.

References
1985 Model Import Car and Truck Specifications, 1985 Ward’s Automotive Yearbook.
Personal Auto Manuals, Insurance Services Office, 160 Water Street, New York, NY 10038

Insurance Collision Report, Insurance Institute for Highway Safety, Watergate 600, Washington,
DC 20037

See Also

viRandomForests

8 margin

Examples

data (imports85)

imp85 <- imports85[,-2] # Too many NAs in normalizedLosses.

imp85 <- imp85[complete.cases (imp85),]

Drop empty levels for factors.

imp85[] <- lapply(imp85, function(x) if (is.factor(x)) x[, drop=TRUE] else x)

stopifnot (require (viRandomForests))

price.rf <- viRandomForests (price ~ ., imp85, do.trace=10, ntree=100)
print (price.rf)
numbDoors.rf <- viRandomForests (numOfDoors ~ ., imp85, do.trace=10, ntree=100)

print (numbDoors.rf)

margin Margins of viRandomForests Classifier

Description

Compute or plot the margin of predictions from a viRandomForests classifier.

Usage
S3 method for class 'viRandomForests'
margin(x, ...)
Default S3 method:
margin (x, observed, ...)
S3 method for class 'margin'
plot (x, sort=TRUE, ...)
Arguments
X an object of class viRandomForests, whose type is not regression

or a matrix of predicted probabilities, one column per class and one row per
observation. For the plot method, x should be an object returned by margin.

observed the true response corresponding to the data in x.
sort Should the data be sorted by their class labels?
other graphical parameters to be passed to plot .default.

Value

For margin, the margin of observations from the viRandomForests classifier (or whatever
classifier that produced the predicted probability matrix given to margin). The margin of a data
point is defined as the proportion of votes for the correct class minus maximum proportion of votes
for the other classes. Thus under majority votes, positive margin means correct classification, and
vice versa.

Author(s)
Robert Gentlemen, with slight modifications by Andy Liaw

MDSplot 9

See Also

viRandomForests

Examples

set.seed (1)

data (iris)

iris.rf <- viRandomForests (Species ~ ., iris, keep.forest=FALSE)
plot (margin(iris.rf))

MDSplot Multi-dimensional Scaling Plot of Proximity matrix from viRandom-
Forests

Description

Plot the scaling coordinates of the proximity matrix from viRandomForests.

Usage
MDSplot (rf, fac, k=2, palette=NULL, pch=20, ...)
Arguments
rf an object of class viRandomForests that contains the proximity compo-
nent.
fac a factor that was used as response to train rf.
k number of dimensions for the scaling coordinates.
palette colors to use to distinguish the classes; length must be the equal to the number
of levels.
pch plotting symbols to use.
other graphical parameters.
Value

The output of cmdscale on 1 - rf$proximity is returned invisibly.

Note

Ifk > 2,pairs isused to produce the scatterplot matrix of the coordinates.

Author(s)

Robert Gentleman, with slight modifications by Andy Liaw

See Also

viRandomForests

10 na.roughfix

Examples

set.seed (1)

data (iris)

iris.rf <- viRandomForests (Species ~ ., iris, proximity=TRUE,
keep.forest=FALSE)

MDSplot (iris.rf, iris$Species)

Using different symbols for the classes:

MDSplot (iris.rf, iris$Species, palette=rep(l, 3), pch=as.numeric(iris$Species))

na.roughfix Rough Imputation of Missing Values

Description

Impute Missing Values by median/mode.

Usage

na.roughfix (object, ...)
Arguments

object a data frame or numeric matrix.

cen further arguments special methods could require.
Value

A completed data matrix or data frame. For numeric variables, NAs are replaced with column
medians. For factor variables, NAs are replaced with the most frequent levels (breaking ties at
random). If ob ject contains no NAs, it is returned unaltered.

Note

This is used as a starting point for imputing missing values by random forest.

Author(s)
Andy Liaw

See Also

rfImpute, viRandomForests.

Examples

data (iris)

iris.na <- iris

set.seed(111)

artificially drop some data values.

for (i in 1:4) diris.na[sample (150, sample(20)), i] <- NA

iris.roughfix <- na.roughfix(iris.na)

iris.narf <- viRandomForests (Species ~ ., iris.na, na.action=na.roughfix)
print (iris.narf)

outlier 11

outlier Compute outlying measures

Description

Compute outlying measures based on a proximity matrix.

Usage
Default S3 method:
outlier (x, cls=NULL, ...)
S3 method for class 'viRandomForests'
outlier(x, ...)
Arguments
X a proximity matrix (a square matrix with 1 on the diagonal and values between 0

and 1 in the off-diagonal positions); or an object of class viRandomForests,
whose type is not regression.

cls the classes the rows in the proximity matrix belong to. If not given, all data are
assumed to come from the same class.

arguments for other methods.

Value

A numeric vector containing the outlying measures. The outlying measure of a case is computed as
n/ sum(squared proximity), normalized by subtracting the median and divided by the MAD, within
each class.

See Also

viRandomForests

Examples

set.seed (1)
iris.rf <- viRandomForests (iris[,-5], iris[,5], proximity=TRUE)
plot (outlier(iris.rf), type="h",

col=c("red", "green", "blue") [as.numeric(iris$Species)])
partialPlot Partial dependence plot
Description

Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the class
probability (classification) or response (regression).

12 partialPlot

Usage

S3 method for class 'viRandomForests'
partialPlot (x, pred.data, x.var, which.class,
w, plot = TRUE, add = FALSE,
n.pt = min(length (unique (pred.data[, xname])), 51),
rug = TRUE, xlab=deparse (substitute(x.var)), ylab="",
main=paste ("Partial Dependence on", deparse (substitute(x.var))),

-)

Arguments
X an object of class viRandomForests, which contains a forest component.
pred.data a data frame used for contructing the plot, usually the training data used to con-
truct the random forest.
x.var name of the variable for which partial dependence is to be examined.

which.class For classification data, the class to focus on (default the first class).

w weights to be used in averaging; if not supplied, mean is not weighted

plot whether the plot should be shown on the graphic device.

add whether to add to existing plot (TRUE).

n.pt if x . var is continuous, the number of points on the grid for evaluating partial
dependence.

rug whether to draw hash marks at the bottom of the plot indicating the deciles of
X.var.

xlab label for the x-axis.

ylab label for the y-axis.

main main title for the plot.

other graphical parameters to be passed on to plot or lines.

Details

The function being plotted is defined as:

fla)=

S|

> fa,mic),
i=1

where x is the variable for which partial dependence is sought, and z;¢ is the other variables in
the data. The summand is the predicted regression function for regression, and logits (i.e., log of
fraction of votes) for which.class for classification:

1 K
f(x) =logpi(x) — 2= > _logp;(x),
j=1

where K is the number of classes, k is which.class, and p; is the proportion of votes for class
j.
Value

A list with two components: x and y, which are the values used in the plot.

plot.viRandomPForests 13

Note

The viRandomForests object must contain the forest component; i.e., created with viRandomForests (. . .,

This function runs quite slow for large data sets.

Author(s)

Andy Liaw <andy_liaw@merck.com>

References

Friedman, J. (2001). Greedy function approximation: the gradient boosting machine, Ann. of Stat.

See Also

viRandomForests

Examples

data(iris)

set.seed (543)

iris.rf <- viRandomForests (Species~., iris)
partialPlot (iris.rf, iris, Petal.Width, "versicolor")

Looping over variables ranked by importance:

data (airquality)

airquality <- na.omit (airquality)

set.seed (131)

ozone.rf <- viRandomForests (Ozone ~ ., airquality, importance=TRUE)

imp <- importancenew (ozone.rf)

impvar <- rownames (imp) [order (imp[, 1], decreasing=TRUE)]

op <- par (mfrow=c (2, 3))

for (i in seqg_along(impvar)) {

partialPlot (ozone.rf, airquality, impvar[i], xlab=impvar[i],

main=paste ("Partial Dependence on", impvar[i]),
ylim=c (30, 70))

par (op)

plot.viRandomForests
Plot method for viRandomForests objects

Description

Plot the error rates or MSE of a viRandomForests object

Usage

S3 method for class 'viRandomForests'
plot (x, type="1", main=deparse (substitute(x)), ...)

14 predict.viRandomForests

Arguments
X an object of class viRandomForests.
type type of plot.
main main title of the plot.
other graphical parameters.
Value

Invisibly, the error rates or MSE of the viRandomForests object. If the object has a non-null
test component, then the returned object is a matrix where the first column is the out-of-bag
estimate of error, and the second column is for the test set.

Note

This function does not work for viRandomForests objects that have type=unsupervised.

If the x has a non-null test component, then the test set errors are also plotted.

Author(s)

Andy Liaw

See Also

viRandomForests

Examples

data (mtcars)
plot (viRandomForests (mpg ~ ., mtcars, keep.forest=FALSE, ntree=100), log="y")

predict.viRandomForests
predict method for random forest objects

Description

Prediction of test data using random forest.

Usage

S3 method for class 'viRandomForests'

predict (object, newdata, type="response",
norm.votes=TRUE, predict.all=FALSE, proximity=FALSE, nodes=FALSE,
cutoff, ...)

predict.viRandomForests 15

Arguments
object an object of class viRandomForests, as that created by the function viRandomForests.
newdata a data frame or matrix containing new data. (Note: If not given, the out-of-bag
prediction in ob ject is returned.
type one of response, prob. or votes, indicating the type of output: predicted

values, matrix of class probabilities, or matrix of vote counts. class is allowed,
but automatically converted to "response", for backward compatibility.

norm.votes Should the vote counts be normalized (i.e., expressed as fractions)? Ignored if
objectS$typeis regression.

predict.all Should the predictions of all trees be kept?

proximity Should proximity measures be computed? An error is issued if object $type
is regression.

nodes Should the terminal node indicators (an n by ntree matrix) be return? If so, it is
in the “nodes” attribute of the returned object.

cutoff (Classification only) A vector of length equal to number of classes. The ‘win-
ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is taken from the forest$cutoff component of
object (i.e., the setting used when running viRandomForests).

not used currently.

Value

Ifobject$typeis regression, avector of predicted values is returned. If predict .all=TRUE,
then the returned object is a list of two components: aggregate, which is the vector of predicted
values by the forest, and individual, which is a matrix where each column contains prediction

by a tree in the forest.

If object$typeis classification, the object returned depends on the argument t ype:

response predicted classes (the classes with majority vote).

prob matrix of class probabilities (one column for each class and one row for each
input).

vote matrix of vote counts (one column for each class and one row for each new

input); either in raw counts or in fractions (if norm.votes=TRUE).

If predict.all=TRUE, then the individual component of the returned object is a character
matrix where each column contains the predicted class by a tree in the forest.

If proximity=TRUE, the returned object is a list with two components: pred is the prediction (as
described above) and proximity is the proximitry matrix. An error is issued if object$type
is regression.

If nodes=TRUE, the returned object has a “nodes” attribute, which is an n by ntree matrix, each
column containing the node number that the cases fall in for that tree.

NOTE: If the object inherits from viRandomForests. formula, then any data with NA are
silently omitted from the prediction. The returned value will contain NA correspondingly in the
aggregated and individual tree predictions (if requested), but not in the proximity or node matrices.

NOTE2: Any ties are broken at random, so if this is undesirable, avoid it by using odd number
ntree in viRandomForests ().

16 rflmpute

Author(s)
Andy Liaw <andy_liaw@merck.com> and Matthew Wiener <matthew_wiener@merck.com>,
based on original Fortran code by Leo Breiman and Adele Cutler.

References

Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

See Also

viRandomForests

Examples

data (iris)

set.seed(111)

ind <- sample (2, nrow(iris), replace = TRUE, prob=c (0.8, 0.2))
1,]

iris.rf <- viRandomForests (Species ~ ., data=iris[ind ==)

iris.pred <- predict(iris.rf, iris[ind == 2,])

table (observed = iris[ind==2, "Species"], predicted = iris.pred)

Get prediction for all trees.

predict (iris.rf, iris[ind == 2,], predict.all=TRUE)

Proximities.

predict (iris.rf, iris[ind == 2,], proximity=TRUE)

Nodes matrix.

str (attr(predict (iris.rf, iris[ind == 2,], nodes=TRUE), "nodes"))

rfImpute Missing Value Imputations by viRandomForests

Description

Impute missing values in predictor data using proximity from viRandomForests.

Usage
Default S3 method:
rfImpute(x, y, iter=5, ntree=300, ...)
S3 method for class 'formula'
rfImpute (x, data, ..., subset)
Arguments
X A data frame or matrix of predictors, some containing NAs, or a formula.
% Response vector (NA’s not allowed).
data A data frame containing the predictors and response.
iter Number of iterations to run the imputation.
ntree Number of trees to grow in each iteration of viRandomForests.

Other arguments to be passed to viRandomForests.

subset A logical vector indicating which observations to use.

treesize 17

Details

The algorithm starts by imputing NAs using na . roughfix. Then viRandomForests is called
with the completed data. The proximity matrix from the viRandomForests is used to update the
imputation of the NAs. For continuous predictors, the imputed value is the weighted average of
the non-missing obervations, where the weights are the proximities. For categorical predictors, the
imputed value is the category with the largest average proximity. This process is iterated iter
times.

Note: Imputation has not (yet) been implemented for the unsupervised case. Also, Breiman (2003)
notes that the OOB estimate of error from viRandomForests tend to be optimistic when run on the
data matrix with imputed values.

Value
A data frame or matrix containing the completed data matrix, where NAs are imputed using prox-
imity from viRandomForests. The first column contains the response.

Author(s)
Andy Liaw

References

Leo Breiman (2003). Manual for Setting Up, Using, and Understanding Random Forest V4.0.
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf

See Also

na.roughfix.

Examples

data(iris)

iris.na <- iris

set.seed(111)

artificially drop some data values.

for (i in 1:4) iris.na[sample (150, sample(20)), 1i] <- NA
set.seed (222)

iris.imputed <- rfImpute (Species ~ ., iris.na)
set.seed (333)
iris.rf <- viRandomForests (Species ~ ., iris.imputed)

print (iris.rf)

treesize Size of trees in an ensemble

Description

Size of trees (number of nodes) in and ensemble.

Usage

treesize (x, terminal=TRUE)

18 tuneRF

Arguments
X an object of class viRandomForests, which contains a forest component.
terminal count terminal nodes only (TRUE) or all nodes (FALSE

Value

A vector containing number of nodes for the trees in the viRandomForests object.

Note

The viRandomForests object must contain the forest component; i.e., created with viRandomForests (. . .

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

viRandomForests

Examples

data (iris)
iris.rf <- viRandomForests (Species ~ ., iris)
hist (treesize(iris.rf))

tuneRF Tune viRandomForests for the optimal mtry parameter

Description
Starting with the default value of mtry, search for the optimal value (with respect to Out-of-Bag
error estimate) of mtry for viRandomForests.

Usage

tuneRF (x, y, mtryStart, ntreeTry=50, stepFactor=2, improve=0.05,
trace=TRUE, plot=TRUE, doBest=FALSE, ...)

Arguments
X matrix or data frame of predictor variables
3% response vector (factor for classification, numeric for regression)
mtryStart starting value of mtry; default is the same as in viRandomForests
ntreeTry number of trees used at the tuning step
stepFactor at each iteration, mtry is inflated (or deflated) by this value
improve the (relative) improvement in OOB error must be by this much for the search to
continue
trace whether to print the progress of the search
plot whether to plot the OOB error as function of mtry
doBest whether to run a forest using the optimal mtry found

options to be given to viRandomForests

varImpPlot 19

Value

If doBest=FALSE (default), it returns a matrix whose first column contains the mtry values
searched, and the second column the corresponding OOB error.

If doBest=TRUE, it returns the viRandomForests object produced with the optimal mt ry.

See Also

viRandomForests

Examples

data (fgl, package="MASS")
fgl.res <- tuneRF (fgl[,-10], fgl[,10], stepFactor=1.5)

varImpPlot Variable Importance Plot

Description

Dotchart of variable importance as measured by a Random Forest

Usage

varImpPlot (x, sort=TRUE, n.var=min (30, nrow(x$Simportance)),
type=NULL, class=NULL, scale=TRUE,
main=deparse (substitute(x)), ...)

Arguments
X An object of class viRandomForests.
sort Should the variables be sorted in decreasing order of importance?
n.var How many variables to show? (Ignored if sort=FALSE.)

type, class, scale
arguments to be passed on to importancenew

main plot title.

Other graphical parameters to be passed on to dotchart.

Value

Invisibly, the importance of the variables that were plotted.

Author(s)

Andy Liaw <andy_liaw@merck.com>

See Also

viRandomForests, importancenew

20 varUsed

Examples

set.seed (4543)

data (mtcars)

mtcars.rf <- viRandomForests (mpg ~ ., data=mtcars, ntree=1000, keep.forest=FALSE,
importance=TRUE)

varImpPlot (mtcars.rf)

varUsed Variables used in a random forest

Description

Find out which predictor variables are actually used in the random forest.

Usage

varUsed (x, by.tree=FALSE, count=TRUE)

Arguments
X An object of class viRandomForests.
by.tree Should the list of variables used be broken down by trees in the forest?
count Should the frequencies that variables appear in trees be returned?
Value

If count=TRUE and by . t ree=FALSE, a integer vector containing frequencies that variables are
used in the forest. If by . t ree=TRUE, a matrix is returned, breaking down the counts by tree (each
column corresponding to one tree and each row to a variable).

If count=FALSE and by .tree=TRUE, a list of integer indices is returned giving the variables
used in the trees, else if by . t ree=FALSE, a vector of integer indices giving the variables used in
the entire forest.

Author(s)

Andy Liaw

See Also

viRandomForests

Examples

data (iris)
set.seed (17)
varUsed (viRandomForests (Species~., iris, ntree=100))

viRandomPForests 21

viRandomForests Variable Importance-Weighted Random Forests

Description

viRandomForests implements variable importance-weighted Random Forests by Liu and Zhao.

Usage

S3 method for class 'formula'
viRandomForests (formula, data=NULL, ..., subset, na.action=na.fail)
Default S3 method:
viRandomForests (x, y=NULL, fprob = NULL, importance.sd = FALSE,
xtest=NULL, ytest=NULL, ntree=500,
mtry=if (!is.null(y) && !is.factor(y))

max (floor (ncol(x)/3), 1) else floor (sqrt (ncol (x))),
replace=TRUE, classwt=NULL, cutoff, strata,

sampsize = i1if (replace) nrow(x) else ceiling(.632xnrow(x)),
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes = NULL,

importance=FALSE, locallImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null (xtest), corr.bias=FALSE,
keep.inbag=FALSE, ...)
S3 method for class 'viRandomForests'

print (x, ...)
Arguments

data an optional data frame containing the variables in the model. By default the
variables are taken from the environment which viRandomForests is called
from.

subset an index vector indicating which rows should be used. (NOTE: If given, this
argument must be named.)

na.action A function to specify the action to be taken if NAs are found. (NOTE: If given,

this argument must be named.)

x, formula a data frame or a matrix of predictors, or a formula describing the model to be
fitted (for the print method, an viRandomForests object).

% A response vector. If a factor, classification is assumed, otherwise regression is
assumed. If omitted, viRandomForests will run in unsupervised mode.

fprob a vector to specify the probability for random feature sampling. Default is
NULL, where features receive probability according to their importance scores
evaluated by the original Random Forests.

importance.sd
Should the variable importance scores be standardized when computing feature
sampling probability? Only considered when fprob = NULL.

xtest a data frame or matrix (like x) containing predictors for the test set.

ytest response for the test set.

22 viRandomPForests

ntree Number of trees to grow. This should not be set to too small a number, to ensure
that every input row gets predicted at least a few times.

mtry Number of variables randomly sampled as candidates at each split. Note that
the default values are different for classification (sqrt(p) where p is number of
variables in x) and regression (p/3)

replace Should sampling of cases be done with or without replacement?
classwt Priors of the classes. Need not add up to one. Ignored for regression.
cutoff (Classification only) A vector of length equal to number of classes. The ‘win-

ning’ class for an observation is the one with the maximum ratio of proportion
of votes to cutoff. Default is 1/k where k is the number of classes (i.e., majority

vote wins).
strata A (factor) variable that is used for stratified sampling.
sampsize Size(s) of sample to draw. For classification, if sampsize is a vector of the length

the number of strata, then sampling is stratified by strata, and the elements of
sampsize indicate the numbers to be drawn from the strata.

nodesize Minimum size of terminal nodes. Setting this number larger causes smaller trees
to be grown (and thus take less time). Note that the default values are different
for classification (1) and regression (5).

maxnodes Maximum number of terminal nodes trees in the forest can have. If not given,
trees are grown to the maximum possible (subject to limits by nodesize). If
set larger than maximum possible, a warning is issued.

importance Should importance of predictors be assessed?

localImp Should casewise importance measure be computed? (Setting this to TRUE will
override importance.)

nPerm Number of times the OOB data are permuted per tree for assessing variable
importance. Number larger than 1 gives slightly more stable estimate, but not
very effective. Currently only implemented for regression.

proximity Should proximity measure among the rows be calculated?
oob.prox Should proximity be calculated only on “out-of-bag” data?

norm.votes If TRUE (default), the final result of votes are expressed as fractions. If FALSE,
raw vote counts are returned (useful for combining results from different runs).
Ignored for regression.

do.trace If set to TRUE, give a more verbose output as viRandomForests is run. If
set to some integer, then running output is printed for every do . t race trees.

keep.forest Ifsetto FALSE, the forest will not be retained in the output object. If xtest is
given, defaults to FALSE.

corr.bias perform bias correction for regression? Note: Experimental. Use at your own
risk.

keep.inbag Should an n by nt ree matrix be returned that keeps track of which samples are
“in-bag” in which trees (but not how many times, if sampling with replacement)

optional parameters to be passed to the low level function viRandomForests.default.

Value

An object of class viRandomForests, which is a list with the following components:

call the original call to viRandomForests

viRandomPForests

type
predicted

importance

importancesSD

localImp

ntree
mtry

forest

err.rate

confusion

votes

oob.times

proximity

mse

rsq

test

Note

23

one of regression, classification, orunsupervised.
the predicted values of the input data based on out-of-bag samples.

a matrix with nclass + 2 (for classification) or two (for regression) columns.
For classification, the first nclass columns are the class-specific measures
computed as mean descrease in accuracy. The nclass + Ist column is the
mean descrease in accuracy over all classes. The last column is the mean de-
crease in Gini index. For Regression, the first column is the mean decrease in
accuracy and the second the mean decrease in MSE. If importance=FALSE,
the last measure is still returned as a vector.

The “standard errors” of the permutation-based importance measure. For classi-
fication,ap by nclass
columns of the importance matrix. For regression, a length p vector.

a p by n matrix containing the casewise importance measures, the [i,j] ele-
ment of which is the importance of i-th variable on the j-th case. NULL if
localImp=FALSE.

number of trees grown.
number of predictors sampled for spliting at each node.

(a list that contains the entire forest; NULL if viRandomForests is run in
unsupervised mode or if keep. forest=FALSE.

(classification only) vector error rates of the prediction on the input data, the i-th
element being the (OOB) error rate for all trees up to the i-th.

(classification only) the confusion matrix of the prediction (based on OOB data).

(classification only) a matrix with one row for each input data point and one
column for each class, giving the fraction or number of (OOB) ‘votes’ from the
random forest.

number of times cases are ‘out-of-bag’ (and thus used in computing OOB error
estimate)

if proximity=TRUE when viRandomForests is called, a matrix of prox-
imity measures among the input (based on the frequency that pairs of data points
are in the same terminal nodes).

(regression only) vector of mean square errors: sum of squared residuals divided
by n.

(regression only) “pseudo R-squared”: 1 - mse / Var(y).

if test set is given (through the xtest or additionally ytest arguments), this
component is a list which contains the corresponding predicted, err.rate,
confusion, votes (for classification) or predicted, mse and rsq (for
regression) for the test set. If proximity=TRUE, there is also a component,
proximity, which contains the proximity among the test set as well as prox-
imity between test and training data.

The forest structure is slightly different between classification and regression. For details on
how the trees are stored, see the help page for getTree.

If xtest is given, prediction of the test set is done “in place” as the trees are grown. If ytest
is also given, and do . trace is set to some positive integer, then for every do . trace trees, the
test set error is printed. Results for the test set is returned in the test component of the resulting
viRandomForests object. For classification, the votes component (for training or test set

+ 1 matrix corresponding to the firstnclass + 1

24 viRandomPForests

data) contain the votes the cases received for the classes. If norm.votes=TRUE, the fraction is
given, which can be taken as predicted probabilities for the classes.

For large data sets, especially those with large number of variables, calling viRandomForests
via the formula interface is not advised: There may be too much overhead in handling the formula.

The “local” (or casewise) variable importance is computed as follows: For classification, it is the
increase in percent of times a case is OOB and misclassified when the variable is permuted. For
regression, it is the average increase in squared OOB residuals when the variable is permuted.

Author(s)

Yiyi Liu <yiyi.liu@yale.edu>, based on randomForest code by Andy Liaw and Matthew
Wiener .

References

Liu, Y. and Zhao, H. (2017), Variable Importance-Weighted Random Forests.
Breiman, L. (2001), Random Forests, Machine Learning 45(1), 5-32.

Breiman, L (2002), “Manual On Setting Up, Using, And Understanding Random Forests V3.17,
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf.

See Also

predict.viRandomForests, varImpPlot

Examples

Classification:

f#data (iris)

set.seed(71)

iris.rf <- viRandomForests (Species ~ ., data=iris, importance=TRUE,

proximity=TRUE)

print (iris.rf)

Look at variable importance:

round (importancenew (iris.rf), 2)

Do MDS on 1 - proximity:

iris.mds <- cmdscale(l - iris.rf$proximity, eig=TRUE)

op <— par (pty="s")

pairs(cbind(iris[,1:4], iris.mds$points), cex=0.6, gap=0,
col=c("red", "green", "blue") [as.numeric(iris$Species)],
main="Iris Data: Predictors and MDS of Proximity Based on viRandomForests")

par (op)

print (iris.mds$GOF)

The “unsupervised' case:

set.seed (17)

iris.urf <- viRandomForests (iris[, -5])
MDSplot (iris.urf, iris$Species)

stratified sampling: draw 20, 30, and 20 of the species to grow each tree.
(iris.rf2 <- viRandomForests (iris[1:4], irisS$Species,
sampsize=c (20, 30, 20)))

Regression:
data(airquality)

viRandomPForests 25

set.seed (131)

ozone.rf <- viRandomForests (Ozone ~ ., data=airquality, mtry=3,
importance=TRUE, na.action=na.omit)

print (ozone.rf)

Show "importance" of variables: higher value mean more important:

round (importancenew (ozone.rf), 2)

"x" can be a matrix instead of a data frame:
set.seed (17)

x <- matrix (runif (5e2), 100)

y <= gl(2, 50)

(myrf <- viRandomForests(x, V))

(predict (myrf, x))

"complicated" formula:

(swiss.rf <- viRandomForests (sqrt (Fertility) ~ . — Catholic + I(Catholic < 50),
data=swiss))

(predict (swiss.rf, swiss))

Test use of 32-level factor as a predictor:

set.seed (1)

x <- data.frame (x1l=gl (53, 10), x2=runif (530), y=rnorm(530))

(rfl <- viRandomForests(x[-3], x[[3]], ntree=10))

Grow no more than 4 nodes per tree:
(treesize (viRandomForests (Species ~ ., data=iris, maxnodes=4, ntree=30)))

test proximity in regression
iris.rrf <- viRandomForests (iris[-1], iris[[1]], ntree=101, proximity=TRUE, oob.prox=FALSE)
str(iris.rrf$proximity)

